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During this last year, we have continued our work in data compression and techniques
that support image coding. The following papers have appeared in print during this time
frame; preprints of those available were included in the last report.

1. F. Kossentini, M. Smith, and C. Barnes, “Image Coding Using Entropy-Constrained
Residual Vector Quantization,” IEEE Transactions on Image Processing, October
1995, pp. 1349-1358.

2. F. Kossentini, M. Smith, and C. Barnes, “Necessary Conditions for the Optimality
of Variable Rate Residual Vector Quantizers,” In IEEE Transactions on Information
Theory, November 1995

3. F. Kossentini, W. Chung, and M. Smith, “Subband Image Coding with Jointly Op-
timized Quantizers,” Proceedings of the Int. Conf. on Acoustics, Speech, and Signal
Processing, Detroit, MI, 1995, pp. 2221-2224

4. W. Chung, F. Kossentini, and M. Smith, “A New Approach to Scalable Video Cod-
ing,” Proceedings of the Data Compression Conference, March 1995.

5. Alen Docef, F. Kossentini, W. Chung, and M. Smith, “Multiplication-Iree Subband
Coding of Color Images,” Proceedings of the Data Compression Conference, March
1995.

6. F. Kossentini, W. Chung, and M. Smith, “Subband Coding of Color Images with
Multiplierless Encoders and Decoders,” Proceedings of the International Symposium
on Circuits and Systems, May 1995.

7. F. Kossentini, M. Smith and A. Scales, “High Order Entropy-Constrained Residual
VQ for Lossless Compression of Images,” Invited Paper in the Proceedings of the
International Symposium on Circuits and Systems, May 1995.

8. F. Kossentini, W. Chung, and M. Smith, “Progressive Image Transmission Using
Entropy Constrained Subband Coding,” Invited paper in the Proceedings of the In-
ternational Conference on Digital Signal Processing, June 26-28, Limassol, Cyprus,
1995. :

During the course of this year, we have examined several new areas, which we found
to be interesting: lossless compression extensions, progressive transmission extensions, and
video coding extensions. Our papers describing these efforts are appended:

1. F. Kossentini, M. Smith and A. Scales, “High Order Entropy-Constrained Residual
VQ for Lossless Compression of Images,” Invited Paper in the Proceedings of the
International Symposium on Circuits and Systems, May 1995.
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2. F. Kossentini, W. Chung, and M. Smith, “Progressive Image Transmission Using
Entropy Constrained Subband Coding,” Proceedings of the International Conference
on Digital Signal Processing, June 26-28, Limassol, Cyprus, 1995.

3. F. Kossentini, M. Smith, A. Scales, Tucker, “Medical Image Compression Using A
New Subband Compression Method,” 1995 SPIE Medical Imaging Conference, San
Diego, CA, February 26 - March 2, 1995.

4. A. Docef and M. Smith, “A Robust Model-Based Coding Technique for Ultrasound
Video,” 1995 SPIE Medical Imaging Conference, San Diego, CA, February 26 - March
2, 1995, pp. 203-213

5. W. Chung, F. Kossentini, and M. Smith, “A New Approach to Scalable Video Cod-
ing,” Proceedings of the Data Compression Conference, March 1995.






Progressive Image Transmission Using Entropy Constrained
Subband Coding *

Faouzi Kossentini, Wilson C. Chung and Mark J. T. Smith
Digital Signal Processing Laboratory
School of Electrical and Computer Engineering

Georgia Institute of Technology
Atlanta, Georgia 30332-0250

Abstract

A recently introduced subband coder with jointly optimized multistage residual scalar
quantizers and entropy coders is employed in a progressive transmission environment. Both
the subband and multistage residual structures are exploited to produce a completely embed-
ded bit stream, making the subband coder suitable for progressive transmission applications.
Different design methods involving both causal and non-causal encoding/decoding procedures
are presented and evaluated subject to practical constraints. The high flexibility provided by
multistage residual quantization and the effectiveness of the entropy coding strategy result in
an attractive balance among reproduction quality, rate, resolution of progressive refinement,
and complexity.

1 Introduction

- In progressive compression systems, the decoder uses the incoming bits to reconstruct increas-
ingly better reproductions of the signal being decoded. The user is thus afforded the capability
to view a rendition of the image immediately, with picture quality improving dynamically as de-
coding is being performed. This has obvious benefits for telebrowsing and archival applications,
rate-scalable codecs, and robust transmission applications over noisy channels.

Progressive transmission is related to the theory of “successive refinement of information,”
which was addressed by Equitz and Cover in [1). They show that a rate-distortion problem
is successively refinable if and only if the individual solutions of the rate distortion problems
can be written as a Markov chain. It is also shown that while successive refinement is possible
for some sources and distortion measures, it is not always achievable. Obviously, a source that
is successively refinable can be sent progressively. However, progressive transmission does not
necessarily imply that the source being transmitted is successively refinable. ]

The question that remains to be answered is: Given a successively refinable source (such as
a memoryless Gaussian with squared error distortion measure), can we design a coder where
the quantized source is transmitted progressively with no additional loss? The answer is yes

*This work was supported in part by the National Science Foundation under contract MIP-9116113 and the
National Aeronautics and Space Administration.
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Figure 1: Basic block diagram of the subband encoder

if we had unlimited computing power and memory. However, given limited complexity, it is
almost impossible to design sequential coders that achieve optimality. Thus, by imposing con-
straints supporting progressive image transmission, some additional distortion will generally be
introduced to the final reconstructed image. )

The subband coder upon which we build achieves excellent performance results [2], but also
employs non-sequential encoding/decoding procedures. Much of this comes from the use of
subband quantizers and entropy coders that are optimized jointly within and across stages and
subbands. In this paper, we show how to include progressive transmission capability with only
minimized loss in rate-distortion performance.

2 The Subband Coder

As shown in Figure 1, the input image is first decomposed into M subband signals using an
analysis transformation. Each subband signal is then encoded using a sequence of P 1 <
m < M) residual scalar quantization (RSQ) encoders. The output symbol of each of the stage
quantizers is fed into an entropy coder driven by a high order stage statistical model that is
governed by a finite state machine (FSM). The FSM allows the statistical model to switch
between several first order (or zero order conditional) models by conditioning on the state of the
FSM.

The algorithm used to design the subband coder minimizes iteratively the expected distor-
tion, subject to a constraint on the complexity-constrained average entropy of the stage quan-
tizers, by jointly optimizing the subband encoders, decoders, and entropy coders. The design
algorithm employs the same Lagrangian parameter A in the entropy-constrained optimization
of all subband quantizers, and therefore requires no bit allocation {2].

The encoder optimization step of the design algorithm usually involves dynamic M-search
of the multistage RSQ in each subband independently. The decoder optimization step consists
of using the Gauss-Seidel algorithm [3] to minimize iteratively the average distortion between
the input and the synthesized reproduction of all stage codebooks in all subbands. Since actual



entropy coders are not used explicitly in the design process, the entropy coder optimization step
is equivalent to a potentially complex high order statistical modeling procedure. The multistage
residual structure substantially reduces the large complexity demands, usually associated with
FSM statistical modeling, and makes exploiting high order statistical dependencies much easier
by producing multiresolution approximations of the input subband images. However, there are
still many issues to be addressed. Multistage RSQs reduce the complexity because the output
alphabet of the stage quantizers is typically very small (e.g., 2, 3, or 4), but the complexity of a
stage entropy coder is still exponentially dependent on its order, of pumber of conditioning sym-
bols or random variables, and/or the output alphabet sizes of the stage quantizers. Moreover,
multistage RSQs also introduce another dimension to the statistical modeling problem, which
significantly increases the number of possible combinations of conditioning symbols. Finally,
many of the frequencies of combinations of conditioning symbols, gathered during the training
process and used as estimates for probabilities, have zero values, producing empty states. This
complicates the encoding stage because a combination of conditioning symbols corresponding to
an empty state may occur. This is the so-called empty state problem, a problem usually associ-
ated with finite state machines. In [2], 2 complexity-constrained statistical modeling algorithm
is proposed that attempts to simultaneously solve the above problems. Using overall complexity
and average entropy of all stage quantizers as the criteria, the algorithm can be described as
follows:

1. For each stage in each subband, and given a sufficiently large region of conditioning sup-
port, locate the best (in the sense of minimizing the entropy) 1st, 2nd, 3rd, ...order
statistical models; .

2. Substantially reduce the stage model orders, thereby reducing the number of conditioning
states, by employing a tree structure and using the generalized BFOS algorithm;

3. Employ the well-known PNN algorithm to further reduce the number of conditioning states
for each stage statistical model (state quantization).

3 Progressive Transmission

An important advantage of the subband coder introduced in [2] is its suitability for progressive
transmission. The successive approximation nature of the subband structure results in mul-
tiresolution approximations of the input image. For example, a lowpass approximation can be
obtained by transmitting information from only the low-low frequency band. Then, the quality
of the reproduction can be successively improved by transmitting information from higher fre-
quency bands. For this progressive transmission technique to be more effective, the subbands
may have to be ordered in accordance with their perceptual importance. Whatever ordering is
used, it must be the same in both design and encoding/decoding procedures. This insures that
only previously coded symbols are required by the FSM. Fortunately, this type of progressive
transmission places no constraints on the encoding/decoding performed within the subbands.
Moreover, non-causal’ encoding/decoding across subbands has negligible impact on performance
anyway. However, incremental SNR improvements obtained between progressive updates tends

1Causality is defined in this paper in the context of operations across stages
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Figure 2: (2) Ilustration of the conditioning structure used in previous work and (b) Ilustration
of the progressive transmission conditioning structure used in this work.

to be large. In fact, decoding the low-low band alone usually yields good quality. What we
would prefer is to reconstruct a low quality initial image in a fraction of time, with increasing
quality as bits are received. ‘

To increase the resolution of the progressive transmission, we exploit the RSQ structure,
which produces multistage approximations of the input image. That is, the farther down the
quantization tree the input coefficient is encoded, the better, on average, the reproduction.
Given that the image is decomposed into N subbands and RSQs with an average number of
stages P are used to code the subband signals, the subband coder can enable the user to see a
progressively improved image taken from a sequence of NP possible reconstructed images. In
general, the subband/RSQ encodes the image using one stage codebook at a time until either
transmission is aborted or until all N P stage codebooks have been used.

To use the RSQ for progressive transmission, the encoding and decoding processes have to
be changed. First, the encoder must change the order in which bits are sent. Instead of sending
all the bits for each input coefficient in each subband all at one time, the encoder scans a partic-
ular image subband and sends a small number of bits (which correspond to the stage codebook
being used) for each coefficient. When encoding is repeated for a particular coefficient in a
certain subband, the encoder recalls at which stage encoding stopped and continues encoding
from there. Of course, the decoder changes its operation accordingly. Second, non-causal RSQ
encoding/decoding can badly affect the performance in the intermediate stages. This is because
we do not know when transmission is going to be halted. To insure that the quality of the
intermediate reproductions is the best possible for the number of received bits, non-causal en-
coding such as dynamic M-search [4] and non-causal decoding such as applying the Gauss-Seidel
algorithm to the stage codebooks have to be abandoned. Third, since the subband coefficients
are coded and transmitted in a different order, conditioning must also be changed. Subsequent
stage symbols of previously coded coefficients are no longer available, but non-causal spatial
regions of support can now be used.. Figure 2 shows a graphical illustration of a conventional
conditioning scheme and another that supports progressive transmission. In figure 2(a), notice
that half-plane support is present for conditioning at the current stage level p, and full-plane
support is available for the previous stage level p— 1. Having full-plane support in stages 1to



p — 1 allows the coder to exploit larger spatial dependencies, which are usually stronger than
inter-stage dependencies.

4 Experimental Results

Several 512 x 512 USC database images were used for training. The image BOAT was not
part of the training sequence and was kept for testing. Each image was decomposed into 16
uniform subbands. To initialize the design algorithm, a multistage RSQ is obtained for each
subband image, as described in [2]. The number of scalars in each stage codebook is set to 3.
A uniform stage codebook size was used for all RSQs in all subbands, which simplifies both
quantization and arithmetic encoding/decoding. We determined empirically that 3-scalar stage
codebooks provide the best tradeoff between resolution of progressive transmission, complexity,
and performance for the training sequence.

Since full-resolution progressive transmission was being tested with conditioning structure as
shown in Figure 2(b), dynamic M-search and joint decoding optimization were not performed.
During the statistical modeling procedure, the total number of probabilities is set to a maximum
of 512. For each state of the FSM model at each stage, only two probabilities, quantized to values
between 0 and 255, are used by each adaptive arithmetic coder. Dynamic adaptation [5] was
performed to further lower the bit rate.

The encoding/decoding complexity and memory of the fully embedded image subband coder
are relatively small. The memory required to store all codebooks for each rate-distortion point
is only 356 bytes, while that required to store the conditional probabilities is 512 bytes. Fur-
thermore, the average number of multiplies /adds required for full-resolution encoding is approx-
imately 10 per input sample. Decoding requires 6 multiplies/adds.

Figure 3 shows the test image BOAT coded at (a) 0.01 bits per pixel (bpp), (b) 0.07 bpp, (c)
0.16 bpp, and (d) 0.35 bpp. Notice that even that only the first stage indices in the low-low band
were decoded in Figure 3(a), the image can still be recognized, and can be decoded rapidly.
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Figure 3: The image BOAT coded using the progressive transmission SBC at (a) 0.01 bpp, (b) '
0.07 bpp, (c) 0.16 bpp, and (d) 0.35 bpp. The PSNRs (in dB) are 21.91, 23.30, 27.26, and 32.13,

respectively.
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Abstract—High order entropy coding is a powerful
technique for exploiting high order statistical depen-
dencies. However, the exponentially high complexity
associated with such a method often discourages its
use. In this paper, an entropy-constrained residual
vector quantization method is proposed for lossless
compression of images, The method consists of first
quantizing the input image using a high order entropy-
constrained residual vector quantizer and then coding
the residual image using a first order entropy coder.
The distortion measure used in the entropy-constrained
optimization is essentially the first order entropy of
the residual image. Experimental results show very
competitive performance.

1. INTRODUCTION

A common approach to lossless image coding is to pre-
process the data, in a way that removes statistical depen-
dencies among the input symbols, and code those sym-
bols with an entropy coder. Individual systems differ in
their choice of statistical models for removing redundan-
cies and their choice of entropy coders, like arithmetic and
Huffman for example. Simple statistical models such as
DPCM can remove some of the dependencies but usually
are ineflective in handling high order dependencies.

High order statistical models have been proposed pre-
viously for lossless compression of binary images [1}, and
were shown to be very effective. Unfortunately, they can-
pot be translated efficiently to the gray-scale case. The
computational and storage demands can be prohibitive.
For example, a typical first order conditional statistical
model might require that 65535 conditional probabilities
be computed and stored. This number grows exponen-
tially with increasing model order. - Compounding the
problem is the fact that many of the probability tables
cannot be populated even when large training sequences
are used, making high order entropy coding a very difficult
task. -

Several methods have been proposed recently for re-

This work was supported by the National Science Foundation
under contract MIP-9116113 and the NASA.

ducing the complexity of these statistical models [2, 3, 4,
5]. Most employ quantization or merging principles to
reduce the number of conditioning states or tables of con-
ditional probabilities, usually leading to orders of mag-
nitude reductions in complexity while sacrificing only a
small loss in performance. Others involve decomposition
of the original signal into binary signals, which increases
the accuracy of estimating the statistical model and thus
improves the compression performance. In this paper,
we introduce a new method that is based ‘on both de-
composition and probability table reduction techniques.
Statistical modeling is performed through high order con-
ditional entropy-constrained residual vector quantization
(CEC-RVQ) [6, 7). The entropy-based distortion measure
employed in the CEC-RVQ optimization coupled with the
high order entropy coding of the CEC-RVQ output result
in substantial reductions in the entropy of the residual
signal. This design framework, leads to high compression
performance relative to other competing approaches.

II. PROPOSED FRAMEWORK

The hybrid technique of quantization and entropy cod-
ing of the residual signal has been shown to yield good
compression performance [8, 9, 10]. This is due to the fact
that quantization often produces a structure where high
order statistical dependencies can be exploited. Moreover,
since the output alphabet of the quantizer can be made
smaller than that of the original signal, the complexity of
high order statistical modeling is reduced. This is espe-
cially the case when structurally constrained quantizers
are employed. In particular, the structure of the multi-
stage residual vector quantization (RVQ) used here has
been shown [11] to be very successful in providing more
accurate estimates of the statistical dependencies of the
original signal while also reducing drastically the complex-
ity of high order statistical modeling. Multistage RVQ
produces multiresolution approximations of the input sig-
nal, and allows high order statistical conditioning to be
performed between the stage sub-signals. .

As shown in Figure 1, we employ a CEG-RVQ to



Figure 1: Proposed CEC-RVQ lossless coder.

quantize the input signal, where the output of the stage
RVQ is then fed into a statistical-model-driven entropy
coder (EC). The high order stage statistical model is rep-
resented by a finite-state machine (FSM) where the state
transitions are based on previously coded symbols. The
quantized signal is rounded to the nearest integer, and the
residual signal, formed by subtracting the rounded quan-
tized signal from the original one, is then coded using a
first order entropy coder. Empirical work has shown that
using higher order entropy coding does not lead to signif-
jcant reductions in output entropy of the residual signal.
In the final stage of the encoder, the bits emanating from
the stage entropy coders as well as the residual entropy
coder are combined together into a uniquely decodable
bit stream, which is sent to the channel.

There are two important ideas, unique to this frame-
work, that exemplify the novelty of this lossless approach.
First, since the overall system is lossless, it is potentially
better to employ the entropy of the residual signal as a
distortion measure in the design of the CEC-RVQ. Using
conventional distortion measures such as the squared error
measure does not lead to minimization of the residual en-
tropy. To elaborate, let  be the input and z be the output
of the CEC-RVQ. The new distortion measure used in the
design of the CEC-RVQ is d(z,2) = — log,[pr(I(z — &))),
where I(a) is the integer closest to the real a. The dis-
tortion is essentially the self-information of the integer-
converted residual signal, and is used as an estimate of the
length of the codeword that would be used to encode the
symbol I(z — z). In other words, the CEC-RVQ designed
to minimize such a distortion measure also minimizes the
entropy?! of the residual signal.

The second idea is that only entropy is 8 measure of
performance. Since the distortion measure is the entropy,
the CEC-RVQ design algorithm produces an operational
entropy-entropy curve where each point represents a pair
of entropies, the first being the high order entropy h, of
the CEC-RVQ and the second being the entropy hr of
the residual. The high order entropy h, is obtained by
ho = H(h,), where H is the operational entropy-entropy
function. It can be easily shown that the function H(h,)
is continuous and differentiable (except for some points).
However, it is generally not convex, and its convexity de-
pends on the source as well as the entropy measure used
to estimate the information content in the residual sig-

1This is the first-order entropy. For higher order entropies, high
order probabilities should be used in the distortion measure.
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Figure 2: DNlustration of an operational entropy-entropy curve.

nal. Fortunately, experimental work shows that for natu-
ral images and the first-order entropy, the function H(h,)
is convex with endpoints H, and H, as illustrated in Fig-
ure (2). In the figure, the right endpoint H is the first-
order entropy of the original signal. The left endpoint
H, = H(0) is the high order entropy of CEC-RVQ which
results in perfect reconstruction after the CEC-RVQ out-
put is rounded to the nearest integer. Due to the mono-
tonicity of the CEC-RVQ (i.e., distortion will, on the aver-
age, only decrease by adding RVQ stages), H, is finite. In
other words, there is a point beyond which all of the real
components of the residual signal lie in the real interval
(—0.5,0.5). The problem at hand is to find an (H(h), hr)
pair such that the function F(h,) = H(h.) + h, is mini-
mized. As shown in the figure, the minimum occurs at h;
such that H'(h?) = —1. As will be shown later, the CEC-
RVQ algorithm is based on a Lagrangian minimization
where )\ is the slope of the operational entropy-entropy
function H. Thus, the problem translates into designing
the EC-RVQ with corresponding Lagrangian parameter
lying in the neighborhood of 1.

Note that F would not necessarily have a minimum
at h? if H were not convex. Moreover, it is implied in
Figure 2 that H, < H. This is not true in general,
gince H depends on the source and H, depends on the
source, quantizer, and quantizer output statistical model.
If H, > H, the minimum may be larger or equal to the en-
tropy H, and quantization becomes useless. However, by
using CEC-RVQ, it is observed that H, is usually signifi-
cantly smaller than H. Thus, CEC-RVQ has the potential
of achieving rates that are substantially lower than those
obtained by first order entropy coding the original signal.

IIl. DESIGN AND COMPLEXITY ISSUES

The CEC-RVQ design algorithm proposed here itera-
tively minimizes the Lagrangian

J» = E[-log, pr(I(X — X))} + AE[&(L(IIU)),



where U is the state random variable {6], L is the high
order conditional entropy mapping, and £(L(J|U)) is the
length of the variable length codeword L(J|U). The La-
grangian parameter A controls the entropy-entropy trade-
offs and is used in the design process to locate on the op-
erational entropy-entropy curve the point where the sum
of the entropies is a minimum or close to a minimum.

In this work, a training sequence that is representative
of the source output to be encoded is used in the design
process. Let ' be the ith k-dimensional vector taken from
the training sequence of size N. An optimal encoding op-
timization step generally requires exhaustively searching
the reproduction vector * that minimizes the Lagrangian
—log, pr(I(zf — ")) + A(—log, pr(j|u)), where j is the
current output of the CEC-RVQ and u € U is the current
conditioning state. This typically yields large encoding
complexity. To reduce complexity, non-exhaustive stage
searching algorithms are usually used, leading to & good
balance between complexity and encoding accuracy. In
particular, the dynamic M-search algorithm [12], which is
shown to generally perform better than the conventional
M-search algorithm, is used here to search the CEC-RVQ.

The decoder optimization step consists of using the
Gauss-Seidel algorithm [6] to iteratively minimize the av-
erage output entropy of the residual signal subject to fixed
stage encoding partitions. Suppose the CEC-RVQ con-
tains P stage VQ codebooks, each containing Np(1 < p <
P) k-dimensional code vectors. Also, let V( Jjp) denote
the jpth non-causal partition cell that corresponds to the
jpth code vector in the pth stage codebook. The partition
cell V(jp) is formed of all stage-removed residual vectors
+'(jp) = ' — z}(jp), where z}, is given by

p-1 P
#0p) = 2wl + X vl
I=1 f=p+1
where ji, ..., jb are the corresponding encoding decisions

for the input vector ‘. Each iteration of the Gauss-Seidel
algorithm consists of sequentially replacing for each stage
partition cell the old stage code vector y(jp) with the cen-
troid vector ¢(jp) given by

>

Y (5p)EV(y)

c(jp) = arg_min — log, pr(I(+* (jp) - w))- (1)

Uuekrk

The centroid vector ¢(jp) is very difficult (if not impos-
sible) to determine analytically. Thus, a numerical op-
timization procedure is used in this work. This further
complicates the decoder optimization, but such iterative
optimization is only performed in the design process and
therefore does not affect the encoder/decoder complexity.

The entropy coder optimization consists of simply up-
dating the finite-state machine (FSM) and the correspond-
ing state tables of conditional probabilities [6]. Only the
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Figure 3: Tllustration of a conditioning structure for CEC-RVQ.

stage high order statistical models are optimized, and no
actual entropy coders are embedded in the design loop.
This simplifies the design process, but the complexity of
the stage statistical models must still be addressed. Like
VQ, high order statistical modeling provides a way to ex-
ploit high order statistics while also requiring complexity
that is exponentially dependent on the parameters of the
model. RVQ drastically reduces the complexity of the high
order model and improves our estimates of the dependen-
cies by generating multistage approximations of the input
signal, where the output alphabets of the subspaces .are
small (e.g., 2, 3, or 4).

Complexity-constrained statistical modeling for the out-
put of the stage RVQs can be divided into three tasks. The
first task is to locate a small number m, of conditioning
symbols (or previous outputs of some stage RVQs), given
an initial region of support containing R, conditioning
symbols, such that the m,th order conditional entropy is
minimized. This is illustrated in Figure 3 for the case
of image coding, where the shaded block in the middle
is the stage vector upon which conditioning is being per-
formed. A total of m (12 in this case) neighboring blocks
is utilized for conditioning. These blocks define the spa-
tial region supporting the conditioning. The solid arrows
show these neighboring blocks at the pth stage. In ad-
dition to the spatial dimension, conditioning is based on
corresponding blocks at different stage levels, which is il-
lustrated in Figure 3 by the dashed arrows, showing these
conditioning blocks at the (p— 1)th and (p + 1)th stages.
By building a conditioning tree as described in (7] and
using the dynamic M-search algorithm, one can find the
best stage statistical models of orders 1, 2, 3, etc.

The second task to be performed is to determine the
best orders for each of the stage statistical models subject
to a constraint on overall complexity. For this purpose, a
tree with P branches is built and populated with a suffi-
ciently large number of complexity-entropy pairs in each
branch. The well-known generalized BFOS algorithm [13]
is then used to prune the tree to find the best stage or-
ders subject to a limit Ty on the number of conditional
probabilities, used here as a measure for complexity.

Since relatively high orders are usually required to
achieve a very low entropy, the complexity of the stage



TMAGE | HYBRID CODER | DPCM | [3) | [4)
LENA 4.27 480 |442]4.20
BRIDGE 4.30 482 |4.30]4.32

Table 1: Performance comparison of the hybrid Jossless coder with
pPCM, (3], and [4].

statistical models can still be high. Moreover, contextual
information is usually located in a relatively small region
of the state space. In other words, many states do not
occur, and corresponding tables of conditional probabili-
ties are not populated. Thus, the third task is to reduce’
the number of states while sacrificing a minimal loss in
performance. The PNN algorithm [14] was shown to be
successful in reducing the size of the stage statistical model
by one order of magnitude while still limiting the increase
in entropy to about 1%. The same approach used to lo-
cate the best stage statistical model orders is used here,
where the PNN algorithm is applied to each of the stage
statistical models with just-determined orders such that
a new complexity-entropy pair is obtained every time two
conditioning states are merged into a new one. The BFOS
algorithm is again applied to identify the best numbers of
conditioning states subject to a limit Ty (T2 << T1) on
the total number of conditional probabilities.

IV. EXPERIMENTAL RESULTS

Several images of size 512 x 512 taken from the UscC
database were used to design a CEC-RVQ codebook as
described in the previous section. In all cases, test im-
ages were excluded from the training set. The CEC-RVQ
codebook contains 12 stage codebooks with four 4 x 4 code
vectors in each codebook. It is searched using the dynamic
M-search algorithm, leading to approximately 60 vector
Lagrangian calculations per input vector. The condition-
ing scheme we use is the one illustrated in Figure 3.

To locate the best orders for the stage models for a
fixed maximum number of 4096 conditional probabilities,
a balanced tree with depth 6 is constructed where the best
1,2,...,6 conditioning stage symbols are used. After the
BFOS algorithm is employed, the number of conditioning
states is further reduced by the PNN algorithm, whose
outputs are used to populate yet another tree. Finally,
the BFOS algorithm is used again to generate the FSM
where the number of conditional probabilities is limited
to 512.

The CEC-RVQ that yields the minimum overall en-
tropy is determined as described previously using the train-
ing sequence. The corresponding set of stage codebooks,
mapping tables generated by the PNN algorithm, and ta-
bles of conditional probabilities are used for encoding.
Table 1 shows the entropy performance of the proposed
hybrid coder, DPCM, and that of two of the best loss-

less compression techniques [3, 4] on the test images LENA
and BOAT. The entropy is used as a measure so that the
comparison is fair. An actual adaptive arithmetic coder
was used to encode both the output of the stage RVQs
and the residual image, and the compression ratios were
slightly larger. Obviously, the proposed coder compares
very favorably. Even better compression performance may
be attained by using larger vector sizes and/or exploit-
ing any statistical dependencies between the multistage
images and the residual one. Preliminary experimental
results are encouraging further study.
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A SUBBAND CODING METHOD FOR HDTV
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This paper introduces a new HDTV coder based
on motion compensation, subband coding, and high

order conditional entropy coding. The proposed coder ~

exploits the temporal and spatial statistical dependen-
cies inherent in the HDTV signal by using intra- and
inter-subband conditioning for coding both the motion
coordinates and the residual signal. The new frame-
work provides an easy way to control the system com-
plexity and performance, and inherently supports mul-
tiresolution transmission. Experimental results show
that the coder outperforms MPEG-2, while still main-
taining relatively low complexity.

1. INTRODUCTION

Several methods have been proposed recently for trans-
mission of HDTV [1, 2, 3, 4, 5, 6, 7). Most employ mo-
tion compensation at one stage or another, after which the
residual between the original and predicted frames is com-
puted and encoded spatially. DCT-based spatial coders
are widely used, most notably in the MPEG standards.
However, subband coders are also becoming popular.

There are many important issues that are associated
with HDTV coding, such as control over the bit rate and
picture quality, error correction and concealment, and mul-
tiresolution capability for multisource decoding and pro-
gressive transmission applications. In this paper, we intro-
duce a new subband video coder which achieves good per-
formance with low relative complexity, but also provides
a framework where most of these issues can be easily ad-
dressed. The proposed coder employs motion estimation
and compensation independently for each subband, but
encodes the motion vectors using a high order conditional
entropy coding scheme that exploits statistical dependen-
cies between motion vectors of the same frame and suc-
cessive frames as well as between the coordinates of the
motion vectors, simultaneously. The coder also identifies
non-compensatable blocks through the use of statistically
optimized thresholding, which are then intra-frame coded.
The video coder is described next. This is followed by a
discussion of practical design issues. Section 4 presents

This work was supported by the National Science Foundation
under contract MIP-9116113 and the National Aeronautics and
Space Administration.

experimental results which compare the performance and
complexity of the coder with that of MPEG-2.

II. THE VIDEO CODER

First, consider a conventional subband video coder. In
the parlance of MPEG, the frames that are coded spatially
are called I frames. Those that are forward-predicted are
called P frames, and those that are forward- and backward-
predicted are called B frames. The sequence of video
frames is first grouped into blocks of N frames, where
the first frame (or I frame) is coded using an intra-frame
subband coder, and the other N — 1 frames (or P frames)
are predicted using motion estimation and compensation,
and the residual frames are coded using another subband
coder. In this work, no B frames are used. At the receiver,
each video frame is constructed from motion information
(if applicable) and the coded residual frame.

Th-re are two important problems associated with the
above coder. First, motion compensation using the block
matching algorithm with a typical block size of 16 x 16
and search range of —16 -to- +16 in each dimension is
usually computationally intensive. This problem becomes
even worse in HDTV coding because both block sizes and
search areas have to be somewhat larger to achieve good
performance. Second, due to the block matching algo-
rithm, blockiness frequently appears in the residual frame,
which introdaces artificial high frequencies. To solve these
two problems, we apply the block matching algorithm to
each of the subbands. Figure 1 shows a block diagram of
the proposed subband coder and Figure 2 shows the struc-
ture of the RVQ coder. Each frame is first decomposed
into subbands using a tree-structured IIR analysis filter
bank. The filter bank is based on two-band decomposi-
tions, which employ allpass polyphase separable IIR filters
[8]. A full-search block matching algorithm (BMA) using
the mean absolute distance (MAD) is used to estimate the
motion vectors.. Since the BMA does not necessarily pro-
duce the true motion vectors, we employ a thiresholding
technique for improving the rate-distortion performance.
Let dynin be the minimum MAD associated with a block
to be coded. Also, let T be a threshold, which is a large
positive number empirically determined from the statis-
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tics of the subband being coded. If dmin > T, then the
block is likely not compensatable. Thus, both the origi-
nal block and the residual block, obtained by subtracting
the motion compensated predicted block from the original
one, are coded using the intra-band and residual coders,
respectively, and the one leading to better rate-distortion
performance is chosen (as will be described shortly). A
special symbol, which can be coded as part of the motion
information, is sent to the decoder indicating the type of
coding used.

In many conventional HDTV subband coders as well
as in MPEG, differential entropy coding of motion vec-
tors is employed. Since motion vectors are usually slowly
varying, the motion bit rate can be further reduced by
exploiting dependencies not only between previous mo-
tion vectors within and across the subbands but also be-
tween the vector coordinates. For this purpose, we em-
ploy a high order conditional entropy coder that is based
on finite state machine (FSM) modeling. More specif-
ically, let (Xnm,Yam) be the pair of random variables
representing the current horizontal and vertical motion
displacements in the current subband (n,m) in frame n.
Also, let (Un,m,Vn,m) be the pair of state random vari-
ables with realizations tp m = {0,1,...,55 m} 20d tam =
{0,1,...,5% ;»}, which we associate with Xn,m and Yn m,

respectively. Each state un m is given by

- R M.
Un,m = Fn,m(sn,ma Spmycce s’n,:nn)»

and each state v, m is given by

Unm = Gn,m(t?;,m’t};,m’ cee ttr}:',%u)i

M Na,
where 82 ., 8% my- -1 8n,m and 10 o lh gy oo lnn aTe

previously coded conditioning symbols. The mappings
F,m and G, ,m are generally many-to-one mappings that
convert combinations of realizations of the conditioning

" symbols to a particular state. Assuming that X, m is en-

tropy coded first, the conditioning symbols for the FSM
model associated with Xy m are selected from a region
composed of symbols located in all previously coded sub-
bands (i.e., where motion vectors were already coded) in
both frames n and n — 1. When Y, m is being coded, the
horizontal displacements in the same subband can also be
included in the conditioning region.

Statistical modeling for entropy coding the motion vec-
tors consists of first selecting, for each subband (n,m),
Mp m (Nn,m) conditioning symbols for Xo.m (Yn,m), and
then finding mappings F,m 8nd Gn,m such that the con-
ditional entropies H(Xn,m|Unm) 8nd H(Xnm|Unm) are
minimized subject to a limit on complexity. The total
number of probabilities that must be computed and stored
is used here as a measure of complexity. The tree-based al-
gorithms described in [9] are used to find the best values of
My m 8nd Ny m subject to a limit C; on the total number
of probabilities. The PNN algorithm [10), in conjunction
with the generalized BFOS algorithm [11], is then used to
construct mapping tables that represent Fn m and Gom
subject to another limit C; (C2 << C)) on the number of
probabilities. :

The intra-band (I-subband) and residual (P-subband)
coders are multistage residual vectors quantizers (RVQs)
followed with high order conditional statistical models,
which are optimized to the intra-band and residual band
statistics, respectively. Multistage RVQs provide an easy
way to control the complexity-performance tradeoffs, and
allow efficient high order statistical modeling. We restrict
the number of code vectors per stage to be 2, which sim-
plifies both statistical modeling and entropy coding used
in this work. This also provides the highest resolution in .
a progressive transmission environment. '

The same statistical modeling algorithm used for en-
tropy coding the motion vectors is also used for entropy
coding of the output of the RVQs. Both the motion vec-
tors and the output of the RVQs are eventually coded
using adaptive binary arithmetic coders (BACGs) [12, 13].
Thess coders are very easy to adapt and require small
complexity.



III. PRACTICAL DESIGN ISSUES

To achieve the lowest bit rate, the statistical models
used to entropy code the motion vectors should be gen-
erated on-line. However, this requires a two-pass process
where statistics are generated in the first pass, and the
statistical modeling algorithm described above is used to
generate the conditional probabilities. These probabilities
must then be sent to the BAC decoders so that they can
track the corresponding encoders. In most cases, this re-
quires a large complexity. Moreover, even by restricting
the number of states to be relatively small (such as 8), the

side information can be excessive. Therefore, we choose-

to initialize the encoder with a generic statistical model,
which we generate using a training HDTYV sequence, and
then employ dynamic adaptation [12) to track the local
statistics of the motion flow.

For both the I-subbands and P-subbands, the multi-
stage RVQs and associated statistical models are designed
jointly using an entropy and complexity-constrained algo-
rithm, which is described in [9, 14]. The design algorithm
iteratively minimizes the expected distortion E{d(X,X)}
subject to a constraint on the overall entropy of the sta-
tistical models. The algorithm is based on a Lagrangian
minimization and employs a Lagrangian parameter A to
control the rate-distortion tradeoffs. To substantially re-
duce the complexity of the design algorithm, only sepa-
rate subband encoders and decoders are used. However,
the RVQ stage encoders in each subband are jointly opti-
mized through dynamic M-search, the decoders are jointly
optimized using the Gauss-Seidel algorithm.

The most important part of the design algorithm is
the encoding procedure, where either an intra-frame or
inter-frame subband coder must be chosen for a particu-
lar block. Suppose we want to encode a block Bj , of size
Ly m using the proposed I-subband and P-subband coders
with Lagrangian parameters (or quality factors) A; and
Ap, respectively. The BMA algorithm is first applied, and
the minimum MAD dpin is computed. If dmin < T, then
the corresponding motion vector is encoded using the BAC
specified by the current state, and the residual block is
quantized using the P-subband (residual) RVQ. The out-
put of each RVQ stage is encoded with a separate entropy
coder composed of a FSM statistical model and a set of
BACs, each specified uniquely by a state. If dmin 2 T,
then the block is both I-subband and P-subband coded.
Let R, = - log, p(*|u') and R, = —log, p(y|¢’) be esti-
mates of the number of bits required to code the horizontal
and vertical coordinates of the motion vector, respectively.
Also, let dp be the distortion and Rp be the rate that
compose the minimum Lagrangian Jp = dp + ApRp Bs-
sociated with coding the residual block. Assuming that
J; = d; + ARy is the minimum Lagrangian associated
with coding the original block, then the I-subband coding

Figure 3: The 114th frame of the sequence BRITS

method is selected if
J; <dp+)p(R: + Ry + Rp).

The proposed coder has many practical advantages,
due to both the subband structure and the multistage
structure of RVQ. For example, multiresolution transmis-
sion can be easily implemented in such a framework. An-
other example is error correction, where the more probable
of the two stage code vectors is selected if an uncorrectable
error is detected. Since each stage code vector represents
only a small part of the coded vector, this should not sig-
nificantly affect the reconstruction or the FSM statistical
models.

IV. EXPERIMENTAL RESULTS

* The image shown in Figure 3 is frame number 114 of
the test sequence BRITS, which we encode using both the
proposed coder and MPEG-2. The frame size is 720x 1280.
The original RGB color sequence with 8 bits/pixel requires
approx 1.3 Gbs. The MPEG-2 software we used resides
on fip.netcom.com:/pub/cfogg/mpeg?2 [15}.

In our experiments, each frame is decomposed into 64
uniform subbands, but more than half of the subbands
are not coded. This is determined based on initial rate-
distortion tradeoffs [9). The BMA algorithm used in our
experiments employs a block size of 2 x 2 and a search
area of —2 -to- +2 in each dimension. Motion estima-
tion is performed, and is done only for the Y luminance
component and the estimated motion vector field is sub-
sequently used for the motion compensation of U and V
chrominance signals. A high order conditional entropy
coder is designed for the motion vector coordinates, and
one I-subband coder and one P-subband coder with vector
size of 2 x 2 are designed for the each of the YUV com-
ponents. We set-the maximum allowed numbers of condi-
tional probabilities for the motion entropy coder and the
I-subband and P-subband entropy coders to C; = 4094
and C, = 512. The BACs used employ a skew factor
between 1 and 256.
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Figure 4: (a) Overall rate usage and {(b) PSNR performance for the
proposed coder.

For each rate-distortion point, the total memory re-
quired to store both the I-subband and P-subband RVQ
codebooks and associated tables of conditional entropy
codes is approximately 4.6 kilobytes. Moreover, only 512
bytes are required by the motion entropy coder. For anal-
ysis, quantization using dynamic M -search, and BAC en-
coding, approximately 27 multiplies and 32 adds per pixel
are required. Only 3 multiplies and 14 adds are required
for BAC decoding, inverse quantization, and synthesis.
Not only are the encoding complexity and memory rela-
tively small, but the performance is also good. Figure 4 (a)
_shows the average bit per pixel and Figure 4 (b) shows the
PSNR result of our coder in comparison with the MPEG-
9 standard for 10 frames of the luminance component of
the color test video sequence BRITS. The average bit rate
is approximately 18.0 Mbits/sec and the average PSNR
is 34.75 dB for the proposed subband coder and 33.70
dB for MPEG-2. As is shown in the figure, the proposed
coder clearly outperforms MPEG-2. Moreover, although
MPEG-2 requires less encoding complexity and memory,
the complexity of our subband coder are still reasonable.

REFERENCES

{1] 3. G. Apostolopoulos and J. S. Lim, “Video compression for
digital advanced television systems,” in Motion Analysis end
Image Sequence Processing, Boston: Kluwer Academic Pub-
lishers, 1992.

[2] S. M. Lei, T. C. Chen, and K. H. Teou, “Subband HDTV
coding using high-order conditional statistics,” JEEE Joxrnal
on Selecied Areas in Commssnicstions, vol. 11, pp. 65-76, Jan.
1993.

[3] 3. Bellisio and K. Tzou, “HDTV and the emerging broadband
isdn network,” SPIE Proc. Visxal Communications and Imgage
Processing, vol. 1001, pp. 772-786, 1988.

[4] F.Bosveld, R. Lagendijk,and J. Biemond, “Hierarchical coding
of HDTV," Signal Processing: Image Commaunication, vol. 4,
pp. 195-225, July 1892.

[s) F. Bosveld, R. Lagendijk, and J. Biemond, “Compatible
HDTV transmission using conditional entropy coding,” in Proc.
ICASSP, vol. V, (Minneapolis, MN, USA), Apr. 1993.

{6] 1. Furukawa, M. Nomura, N. Otha, and S. Ono, “Hierarchical
coding of super high definition images with adaptive block-size
multi-stage VQ," Signal Processing of HDTV, vol. 111, 1892.

{7] S. Wu and A. Gersho, “Rate-constrained optimal block-
adaptive coding for digital tape recording of HDTV,” JEEE
Trans. on CVST vol. 1, pp. 100-112, March 1891.

(8] M. Smith and S. Eddins, “Analysis/synthesis techniques for
subband image coding,” JEEE Trans. on ASSP., vol. 38,
Pp. 1446-1456, Aug. 1991.

[9) F. Kossentini, W. Chung, and M. Smith, “A jointly optimized
subband coder,” Sxbmitied to Transactions on IP., July 1994.

{10] W. H. Equitz, “A new vector quantization clustering algo-
rithm,” JEEE Trans. ASSP., pp. 1568-1575, October 1989.

[11] E. A. Riskin, “Optimal bit allocation via the generated BFOS
algorithm,” IEEE Trons. on IT, vol. 37, pp. 400-472, Mar.
1991.

[12] G. G. Langdon and J. Rissanen, “Compression of black-white
images with arithmetic coding,” IEEE Trans. on COM, vol. 29,
no. 6, pp. 858-867, 1981.

{13) W. B. Pennebaker, J. L. Mitchell, G. G. Langdon, and R. B.
Arps, “An overview of the basic principles of the Q-coder
adaptive binary arithmetic coder,” IBM J. Res. Dev., vol. 32,
PP. T17-726, Nov. 1888.

[14) F. Kossentini, W. Chung, and M. Smith, “Subband imsge cod-
ing with jointly optimived quantizers,” Absiract Submitted to
ICASSP, (Detroit, M1, USA), Apr. 1885.

[15] MPEG Software Simulation Group, “MPEG-2 encoder / de-
coder, version 1.0," ISO/IEC DIS 13818-2 codec, May 1895.






Medical image compression using a new subband coding method

Faouzi Kossentini and Mark J. T. Smith

School of Electrical & Computer Engineering
Georgia Institute of Technology
Atlanta GA 30332-0250

Allen Scales

Nichols Research Corporation
Huntsville AL 35815-1502

Doug Tucker

University of Alabama at Birmingham
Birmingham AL 35233

ABSTRACT

A recently introduced iterative complexity- and entropy-constrained subband quantization design algorithm is
generalized and applied to medical image compression. In particular, the corresponding subband coder is used to
encode computed tomography (CT) axial slice head images, where statistical dependencies between neighboring
image subbands are exploited. Inter-slice conditioning is also employed for further improvements in compression
performance. The subband coder features many advantages such as relatively low complexity and operation over
a very wide range of bit rates. Experimental results demonstrate that the performance of the new subband coder
is relatively good, both objectively and subjectively.

1 INTRODUCTION

Subband image coding of 8-bit/pixel natural images has been studied extensively in the literature.) Common
to all subband image coding systems is the decomposition of the input image into subband images using a two-
dimensional, mostly separable, filter bank. The resulting subband images are then quantized and entropy coded
separately. Since the subband images typically have different statistical properties, a bit allocation algorithm is
usually used to distribute bits among the subbands.

The subband image coder proposed in references?? is different in that the design algorithm optimizes the
subband quantizers and associated entropy coders jointly within and across the subbands in a complexity- and
entropy-constrained framework. Advantages of the design algorithm are that it provides much greater control on
the complexity-performance tradeoffs by using multistage residual vector quantizers,®® and that no bit allocation



algorithm is required. This coder works very well for quasi-stationary signals such as most natural images. It can
be designed to match the global statistics of a class of images by using a representative training sequence, and
can be adapted to local statistics that are specific to individual images through the use of adaptive arithmetic
coding.57 '

Like many natural images, medical images that are acquired from the same anatomical section using the same
imaging modality are also quasi-stationary. A specific class of images, such as computed tomography (CT) axial
slice head images, features similar global structural appearances due to the similarity in anatomical and tissue
structures among different patients. On the other hand, anomalies such as pathologies or image artifacts, different
density tissues, and different imaging conditions, produce image patterns that are not part of the training sequence.
In medical imaging, some of these local statistics represent very critical information, and failing to reproduce such
unique patterns can significantly impair the usefulness of the compressed medical image.

The problem of subband coding medical images using the coder proposed in references?? is addressed in this
paper. Although there are many similarities between natural and medical images, the problem of subband coding
medical images is very different. Medical images are obtained from a variety of devices, and the images produced
have different characteristics (e.g. dynamic range, spatial resolution) as well as distinct statistical dependencies.
Performance can be improved by designing the filters, decomposition structures, quantizers, and entropy coders
differently. For example, medical images contain a significant amount of both high and low frequency information.
Thus, uniform decompositions fair better than the octave-band (or wavelet) decomposition frequently used in
natural image subband coding. Moreover, a higher degree of fidelity is required in the compressed-decompressed
images. Experimental work® shows that the choice of filters and filter design parameters has little or no effect on
the reproduction quality in the low bit rate range. However, as will be discussed in this paper, filters do affect the
subband coder’s performance both objectively and subjectively in the bigh bit rate (high fidelity) range. Another
problem associated with high fidelity subband coding is the large complexity usually required by the quantizers
and corresponding entropy coders. Fortunately, since the proposed subband coder employs multistage residual
vector quantizers, the complexity associated with both quantization and entropy coding is still relatively low.

The subband coder described in references®? exploits both statistical intra-band and inter-band dependencies
within an image simultaneously, mainly through complexity-constrained high order conditional entropy coding.
In this work, inter-band dependencies both within a slice image and between slice images are exploited, resulting
in a 5-10 % improvement in compression-complexity performance for the same reproduction quality. Next, we
provide a brief description of the coder’s components. This is followed by a discussion of design and complexity
issues. This paper concludes with a discussion of the application of the subband coder to medical images and a
presentation of some CT Head image coding experimental results.

2 THE SUBBAND CODER

Figure 1 shows the block diagram of the subband encoder used in this work. As is the case in conventional
subband coding, the input image is first decomposed into M subband images using an analysis transformation.
In this work, we employ a uniform tree-structured decomposition which is based on 2-band exact reconstruction
filter banks. Each subband image is then encoded using a sequence of Pr, (1 £ m < M) residual vector quan-
tization (RVQ) fixed length encoders. Multistage RVQ is instrumental in drastically reducing the complexity of
encoding/decoding as well as entropy coding, while still maintaining good rate-distortion performance. Advan-
tages of multistage RVQs will be described in the following sections. Although encoding optimality can generally
be achieved through exhaustive searching of the RVQ stage codebooks in all subbands (i.e. embedding the syn-
thesis transforrmation in the encoding procedure), experiments have shown that dynamic M-search® of the stage
codebooks in each subband separately usually leads to the best complexity/performance tradeoffs.

The output symbol of each of the stage vector quantizers is fed into an entropy coder driven by a high order
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stage statistical model that is governed by a finite state machine (FSM). The FSM allows the statistical model to
utilize information about previously coded stage vectors. A nonlinear function F given by u = F(sy,82,...,8n),
where sy, 62, . . ., 8 are n conditioning symbols, or previous outputs of particular fixed-length RVQ stage encoders,
is used here to determine the conditioning state u. As will be described in the next section, F is a many-to-one
function that is represented by a table mapping each combination of realizations of conditioning random variables
into a conditioning state. Since only previously coded symbols are used by the FSM, no side information is
necessary and the decoder can track the state of the encoder by only storing the same table. Finally, the output
bits of the entropy coders are combined together and sent to the channel. ’

3 DESIGN AND IMPLEMENTATION ISSUES

The algorithm used to design the subband coder minimizes iteratively the expected distortion subject to a
constraint on the complexity-constrained high order conditional entropy of the stage vector quantizers (VQs).
The popular squared error measure is used here as the distortion measure. This design algorithm is based on a
Lagrangian minimization, and is a generalization of entropy-constrained algorithms described in.}%!15 Details
of the joint optimality conditions used in the development of the algorithm and convergence issues are discussed
elsewhere 3

Given a Lagrangian parameter, A, which is chosen based on the overall rate and distortion of the subband
system (i.e. no bit allocation algorithm is required), the entropy-constrained joint subband quantization algorithm
consists of three optimization steps. The encoder optimization step involves exhaustively searching all RVQ stage
codebooks, a task which requires a huge computational load. A large reduction in complexity can be achieved by
using dynamic M-search. This results in only a small loss of performance. The decoder optimization step consists
of using the Gauss-Seidel algorithm® to minimize iteratively the average distortion between the input and the
synthesized reproduction of all stage codebooks in all subbands. The complexity can be drastically reduced by,
for example, grouping neighboring stage codebooks in neighboring subbands and jointly optimizing each group
independently. This typically results in less than a 0.10 dB loss in signal-to-noise (SNR) performance.

Since actual entropy coders are not used explicitly in the design process, the entropy coder optimization step
is equivalent to a high order statistical modeling procedure. In terms of complexity (i.e. computational load
and memory requirements), high order statistical modeling is potentially the most demanding task of the design
algorithm. However, using the multistage residual structure not only substantially reduces the large complexity
demands, usually associated with high order conditional entropy coding, but also makes exploiting high order
statistical dependencies much easier by producing multiresolution approximations of the input subband images.
However, there are still many issues to be addressed. Multistage RVQs reduce the complexity because the output
alphabet of the stage quantizers is typically very small (e.g., 2, 3, or 4), but the complexity of a stage entropy
coder is still exponentially dependent on its order (number of conditioning symbols or random variables) and/or
the output alphabet sizes of the stage quantizers. Moreover, multistage RVQs also introduce another dimension to
the statistical modeling problem, which significantly increases the number of possible combinations of conditioning
symbols. Finally, many of the frequencies of combinations of conditioning symbols, gathered during the training
process and used as estimates for probabilities, have zero values, producing empty states. This complicates the
encoding stage because a combination of conditioning symbols corresponding to an empty state may occur. This
is the so-called empty state problem, a problem usually associated with finite state machines.

In reference,? a complexity-constrained statistical modeling algorithm is proposed that attempts to simultane-
ously solve the above problems. To help illustrate the algorithm, Figure 2 shows the inter-stage, inter-band, and
intra-band conditioning scheme employed in this work. Each image shown in the figure is a multistage approxi-
mation of a particular slice image. Note that statistical dependencies both within and across slice images can be
exploited. For each stage (m,p) in each subband m, a 5-dimensional initial region of support Ry p containing
a sufficiently large number R p of conditioning symbols is first chosen. Then, the nmp, fim,p << Rmp, con-
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ditioning symbols s', ..., s"™» that lead to the smallest npm pth order conditional entropy H(Jm pls?,...,5"™")
are located by building a special tree and using the dynamic M-search algorithm.

The next step of the algorithm is to find orders of all stage statistical models such that the average entropy
in all subbands given a fixed level of complexity, expressed here in terms of total number of probabilities to be
computed/stored, is minimized. The process described above is repeated for each stage (m, p) and many values of
nm p, producing, let’s say, Ly p complexity-entropy pairs per stage. For each complexity-entropy pair, complexity
is given by Nnp = SmpNmp, where Smp is the number of all combinations of realizations of the conditioning
symbols and Np,p is the output alphabet size of stage p in band m. Once all complexity-entropy pairs are
obtained, a tree with 25:1 P,, branches, where P, is the number of stage codebooks in the mth subband, can
be built. Each branch of the tree is a unary tree of length Ly, p, and each node represents a complexity-entropy
pair. The generalized BFOS algorithm!? is then used to minimize the average entropy subject to a constraint N
on the total number of conditional probabilities. '

The FSM statistical model for each stage (m,p) employs a mapping F to determine the state given ng p
available conditioning symbols. This mapping F is one-to-one and is actually given by a table that contains
the numbers 0,1,...,S8m p — 1, representing each of the possible combinations. Up to this point, the number of
conditioning states for each of the stages is typically large. Many of the corresponding tables of probabilities may
still be empty after the design is completed, thereby occupying memory which can usually be more efficiently used.
Moreover, as mentioned earlier, these empty tables may be visited during actual encoding even though they were
pever visited during the design process. Therefore, the last step of the algorithm is to further reduce the number
of conditioning states through quantization. In this work, the PNN algorithm?? has been shown to be successful
in reducing the number of states by orders of magnitude while still bounding the loss in entropy performance
to about 1%. The PNN algorithm first merges all of the empty states with the least probable state into one
conditioning state, thereby completely removing empty states. Then, the two conditioning states resulting in
the lowest increase in entropy (when merged) are combined into one conditioning state, and so on until only one
state, which represents one table of first order probabilities, is obtained. Since the objective is to minimize the
complexity-constrained average entropy, the BFOS algorithm is again used, where a much smaller complexity
value N is the constraint or criterion.

In the context of medical image compréssion, quantization of the conditioning states has two important advan-
tages. First, the stage statistical model orders can be allowed to grow to relatively large numbers, which generally
results in significantly lower average entropy because most medical images feature high order global statistical
dependencies. This also incurs a small additional enoding/decoding complexity, since only larger mapping tables
have to be stored/accessed. Second, the merging process improves the robustness of the subband coder because
only global statistics are carried through, and the possibility of a strong mismatch between individual medical
images and the subband coder is less likely.

4 EXPERIMENTAL RESULTS

A total of 90 axial slice CT head images with no abnormal findings were used for training and testing. Images
were selected retrospectively from studies of 10 patients undergoing scans as a part of their clinical care. A General
Electric (Waukasha, Wi) Hi-Lite Advantage CT scanner was used to produce all images which were either 3 mm -
(posterior fossa, 120 kVp, 320 mAs) or 5 mm (mid-brain, 120kVp, 240 mAs) thick slices. All images were of size
512 x 512 with 12 bit/pixel amplitude resolution. No special image processing or reconstruction algorithms were
applied. Each image was extracted from the CT scanner’s proprietary database using software tools supplied
by the manufacturer. Subsequently, the proprietary header information was removed and the raw images were
stored with 16-bit amplitude precision. A set of 12 slice images was kept for testing, and was not used as part of
the training sequence.



Two experiments were performed. The first investigated the performance of the spatial subband coder, while
the second considered exploiting both spatial and inter-slice dependencies within the CT image sequence. In both
experiments, each slice image was first fed into a 9-level balanced tree structured filter bank, producing 16 image
subbands. The A11 allpass polyphase exact reconstruction IIR filters!4 were used in our simulations. Many other
filters, such as the Johnston 16-tap and 32-tap QMFs!® and the Daubechies 32-tap wavelet filters,1® were tested
and were found to be inappropriate. The SNR reconstruction performance of these filters for the test CT images
did not exceed 52 dB even when quantization was not performed. This is unsatisfactory in light of the fact that
the medical community demands a SNR reconstruction performance that is usually 50 dB or higher.

In this work, we employ a vector size of 1 x 1 (scalar quantizer). Although k-dimensional vector quantizers
are potentially better than scalar quantizers, their complexity is very large. Thus we found scalar quantizers to
be more appropriate, particularly considering the high rates of operation. To initialize the design.algorithm, a
multistage residual scalar quantizer (RSQ) is obtained for each subband image, as described in reference.3 The
number of scalars in each RSQ stage codebook is set to 3. Non-uniform stage codebook sizes were considered, but
no significant improvement in rate-distortion performance was obtained. Furthermore, choosing a uniform stage
codebook size for all RSQs in all subbands simplifies both quantization and arithmetic encoding/decoding. We
have also tried stage codebooks of sizes 2,3,4,5,... and have determined that 3-scalar stage codebooks provide
the best complexity-performance tradeoffs for the training CT sequence.

In both experiments, dynamic M-search with a fixed threshold of 10 was used in the encoder optimization.
Moreover, a joint decoder optimization between stages only is used in both cases. In other words, no joint
optimization between subband decoders is performed. During the statistical modeling procedure, the value of V;
was set to 8192, and the value of A3 was set to 1024. For each state of the FSM model at stage (m,p), only
two probabilities, quantized to values between 1 and 256, are needed by each adaptive arithmetic coder. Since
the probabilities are constrained to be powers of 2, no multiplications are necessary in the implementation of
the arithmetic encoders/decoders. Dynamic adaptation!” was performed to further lower the bit rate. Although
good performance high rate coders typically require a large design complexity, such is not the case in the first
experiment. About 12 CPU hours on a Sparc 10 Sun Station were required to design subband coders operating
at rates between 0.80 and 2.0 bpp. However, the design complexity in the second experiment is relatively large.
More specifically, more than two days in CPU time were required to design the same number of codebooks and
corresponding entropy coders. This is due to the fact that inter-slice conditioning requires that a much larger
region of support be used, which complicates statistical modeling.

The encoding/decoding complexity and memory of the CT image subband coder are relatively small. The
memory required to store all codebooks for each rate-distortion point is only 1152 bytes, while that required to
store the conditional probabilities is approximately 1024 bytes. Furthermore, the average number of operations
(multiplies/adds) required for encoding is 14.64 per input sample. Decoding requires 10 multiplies/adds. By
placing some constraints on the coder, encoding/decoding can also be implemented without multiplications.
However, such constraints also affect the rate-distortion performance. Full evaluation of a multiplication-free
implementation of this subband coder for medical image compression is the subject of further research.

The objective quality of the reconstructed CT slice images is very good. Table 1 shows rates and SNRs for
all 12 test CT slice images for average rates of 2.00, 1.50, 1.0 and 0.80 bpp, corresponding to compression ratios
of 6:1,8:1,12:1, and 15: 1, respectively. The SNR is defined by

TN T (2, ) - 8,5))
T T (=, 5) - B

where N X' M is the numiber of samples in the image, (i, j) and (i, j) represent the original and the coded value
(respectively) of the (i, j)th sample, and p is the mean of z(i, j). Figure 3(a) shows the original slice image # 11.
Figure 3(b) shows the residual image formed by taking the absolute difference between the original image and the
reconstructed one at a bit rate of 0.73 bpp. Note that the intensities of the residual image have been magnified
by a factor of 16. Finally, Table 2 compares the bit rates and SNRs of the first and second experiments for the

SNR = —10 logm
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6:1 8:1 12:1 15:1
BR | SNR | BR | SNR | BR [ SNR | BR | SNR
SLICE #1 | 2.16 | 56.83 | 1.75 | 52.89 | 1.13 | 48.75 | 0.89 46.35
SLICE #2 | 2.12 | 57.06 | 1.61 | 52.99 | 1.12 | 48.64 | 0.92 46.50
SLICE #3 | 2.09 | 57.11 | 1.67 | 53.05 | 1.16 | 48.77 | 0.89 46.41
SLICE #4 | 2.11 | 56.97 | 1.50 | 52.89 | 1.05 | 48.61 | 0.83 46.24
SLICE #5 | 1.99 | 57.27 | 1.42 | 53.00 | 0.98 | 48.90 | 0.79 46.62
SLICE #6 | 2.01 | 57.13 | 1.46 | 52.92 | 1.01 | 48.83 | 0.80 46.59
SLICE #7 | 2.03 | 57.18 [ 1.48 | 52.94 | 1.02 | 48.82 | 0.82 46.54
SLICE #8 | 2.01 | 57.31 | 1.45 | 53.03 | 0.95 | 48.89 | 0.80 46.62
SLICE #9 | 1.94 | 57.35 | 1.39 | 53.10 | 1.02 | 48.86 | 0.77 46.61
SLICE #10 | 1.89 | 57.33 | 1.42 | 53.03 | 0.98 | 48.84 | 0.74 46.58
SLICE #11 | 1.84 | 57.36 | 1.38 | 53.06 | 0.93 | 48.89 | 0.73 46.65
SLICE #12 | 1.84 | 57.13 | 1.33 | 52.88 | 0.90 { 48.93 | 0.71 | 46.

Table 1: Bit rate (BR) in bits per pixel (bpp) and signal-to-noise ratio (SNR) in decibels (dB) for the 13 slice
images used in the first experiment at compression ratios of 6:1, 8:1, 12:1, and 15:1.

6:1 15:1
BR | SNR | BR | SNR
Non-inter-slice | 1.84 | 57.36 | 0.73 | 46.65
Inter-slice 1.71 1 57.29 | 0.68 | 46.68

Table 2: Bit rate (BR) in bits per pixel (bpp) and signal-to-noise ratio (SNR) in decibels (dB) for the slice image
#11 at compression ratios of 6:1 and 15:1.



slice image # 11 at the two 6 : 1 and 15 : 1 compression ratios. Looking at Table 2, one can see that inter-slice
conditioning resulted in a 7 % decrease in bit rate roughly for approximately the same objective quality.

Compressed and reconstructed images of the non-inter-slice conditioning experiment were also viewed by an
experienced radiologist for his impressions. Viewing was performed in a low-light environment. Images were
displayed on an Image Systems M21PMAX 1280 x 1024 display using a Dome MD2KEISA display controller on
a DELL Omniplex Pentium personal computer running MS-DOS 6.21 and an image viewing software customized
from DOME’s software library. The same series of 12 images, each compressed at 6:1, 8:1 and 12:1, were used.
For each image viewing, the original image and a single compressed-reconstructed image were displayed together.
All images compressed at 6:1 were viewed first, followed by the 8:1 and the 12:1 images, respectively. The
radiologist was allowed to adjust window and level settings and no time constraints were imposed. The radiologist’s
impression was solicited. The radiologist reported no noticeable difference between the original image and the 6:1
or 8:1 compressed-reconstructed images. For two of the twelve 12:1 compressed-reconstructed images the observer
noted slight enhancement of the high frequency component (noise) of the compressed-reconstructed image.

5 CONCLUSIONS

The results of the preliminary viewing of the compressed-reconstructed images by a radiologist were encour-
aging. We are currently conducting more rigorous observer performance tests to determine objectively the per-
formance of radiologists using the compressed-reconstructed images. The computational complexity and memory
requirements make this coder a suitable candidate for implementation in real-time hardware.
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A Robust Model-Based Coding Technique for Ultrasound Video *
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ABSTRACT

This paper introduces a new approach to coding ultrasound video, the intended application being very low bit rate
coding for transmission over low cost phone lines. The method exploits both the characteristic noise and the quasi- periodic
nature of the signal. Data compression ratios between 250:1 and 1000:1 are shown to be possible, which is sufficient for
transmission over ISDN and conventional phone lines. Preliminary results show this approach to be promising for remote
ultrasound examinations.

Keywords: telemedicine, ultrasound, video coding, model-based coding, subband coding.

1 INTRODUCTION

Ultrasound video is a very cost effective diagnostic modality, and thus is widely used throughout this country and
the world. Although ultrasound equipment is often available in rural and remote comers of the country, specialists to
interpret data are typically in short supply in these locations. With the interest and support in telemedicine, the notion of
having specialists perform ultrasound examinations at remote locations via electronic data exchange is very attractive. In
the absence of channel bandwidth constraints, such an approach is straightforward, with high potential benefits related to
providing immediate care and lowering overall expense. Unfortunately, many of these remote locations do not have access

to or cannot afford to use high capacity channels (such as T1 lines) to interface with large well-staffed urban medical centers
where such specialists reside.

In the presence of channel bandwidth constraints, this approach is encumbered by the large volume of data associated
with digital video. Effective compression of the ultrasound prior to transmission will allow this data transfer to occur. The
key is to achieve sufficient compression with acceptable reconstruction quality at rates compatible with telephone and ISDN
lines. In this work we consider ultrasound video of the heart, where the remote examination involves a specialist at a remote
location guiding the attending practitioner by telephone. A critical part of this examination is obtaining proper positioning
of the ultrasound probe, so that a diagnosis can be made. The transmitted video quality standards for positioning purposes
are clearly not as stringent as those for diagnosis. If positioning quality can be achieved, then higher quality video can be
transmitted in a non-real time mode for diagnosis. Of course we hope to eventually be able to transmit diagnostic quality
ultrasound in real time, but this not yet in reach. Regardless, the approach outlined above is a marked improvement in terms
of accuracy and speed over sending video tapes by courier.

*This work was supported in part by the National Science Foundation under contract MIP-9116113 and by NASA.



The target goals imply compression ratios in the range from 250:1 to 1000:1. An obvious first line of attack on this
problem is to investigate to what extent spatial and temporal sampling (i.c. frame size and frame rate) can be decimated
without significantly impairing the quality. This has the advantage of being attractive computationally. Based on feedback
from the Medica! College of Georgia, a 4:1 reduction in spatial resolution to a size of 256 x 256 was judged to be acceptable.
However, the full 30 /s frame rate was recommended, particularly for pediatric cardiology where the heart rates are often
very high.

Conventional coding methods such as H.261 and MPEG are not well suited to ultrasound video. The data rates tend to
be too high and they have difficulty representing the high frequency information in the input. Model-based methods on the
other hand are known for high compression ratios but suffer typically from variegated performance behavior over a wide
variety of inputs. :

In this paper, we introduce a model-based method that provides both high compression and robust behavior. To meet the
difficult compression requirements imposed by the telephone bandwidth, it is important to identify and exploit all available
properties of the signal and preserve with fidelity those parts of the signal that are important for expert analysis. In the
case of ultrasound video in cardiology, for example, cardiologists must be able to see the shape of the walls, the shape and
thickness of the valves and the tissue texture. By taking into account the nature of the noise/texture associated with the
ultrasound images and identifying the important components (wall boundaries, valves, etc.), we formulated a visual model
that can be used for very low bit rate coding.

2 SYSTEM DESCRIPTION

The components of the proposed coding system are outlined in Figure 1. First, each input frame 2, i ; is decomposed
nonlinearly into two components: a lowpass component, which is denoted by I, 5 ;; and a highpass or texture component,
tnij» where n is the frame numbser, § is the row number, and j is the column number. The decomposition is based on a
signal mode! and is optimized empirically such that the lowpass component contains most of the information needed for
diagnosis, such as the contours of walls and valves. The highpass component contains information about the texture of the
tissue being examined. The non-lincar subband decomposition (upon which we elaborate later) is shown as the first block
in Figure 1. After the decomposition, the Jowpass component is then decimated in i and j to the Nyquistrate. Signal coding
is then performed using an optimized subband coding method recently developed in the digital signal processing laboratory
at Georgia Tech.! Some details of this method are presented in a later section.

The lower branch of the system contains the texture information. It is decimated in the temporal domain and encoded
using an in-house version of entropy-constrained residual scalar quantization.? The two encoded components are then time-
multiplexed into the narrowband telephone channel for transmission to the remote location. At the receiver, the channel
signals are demultiplexed and the individual components are decoded. The lowpass component is then upsampled and
interpolated spatially to restore it to is proper size and the texture component is upsampled temporally to the original frame
rate. After the components are restored, they are combined the 2-D nonlinear synthesis section to form the reconstructed
video. In the next sections, we take a closer look at the individual operations shown in the block diagram in Figure 1.

3 NONLINEAR SUBBAND DECOMPOSITION

Two particular characteristics of the ultrasound video signal support the idea of using the model-based decomposition.
First, if a static tissue is examined, the ultrasound image can be interpreted as the product of a luminance lowpass component,
representing the intensity of the ultrasonic wave in the vicinity of the examined tissue, and a constant reflectance component,
representing the reflection cocfficients associated with the tissue. Second, ultrasound images are typically very noisy.
Usually, additive noise models are used to describe the effect of noise in images. Filtering out the noise could enhance the
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images, but more important it makes the image easier to code. If the noise has a gaussian distribution then a linear filter is
optimal for maximizing the signal-to-noise ratio. In our case, however, the goal is to maximize the subjective quality of the
lowpass component.

Thus two approaches can be considered. an additive model and a multiplicative model. A model formulation that covers
both additive and multiplicative variates is depicted in Figure 2. It is similar in nature to the homomorphic model pioneered
by Stockham® for the purpose of image enhancement.

The filter H(w), shown in Figure 2, is a lowpass filter with a cutoff frequency of we = #/D;. The nonlinear
decomposition is then described by the equation .

Znig =¥ (¥lnig) + ¥(tniis))-
This decomposition is equivalently a nonlinear subband decomposition. The nonlinearity ¥(.) is chosen to be of the form
¥(z) = pz°.

For B = 1and o = 1, ¥(-) is the identity mapping and we obtain the additive model. For a = 0.231, ¥(z) =~ flog(z) in
the range 0 to 255, and we obtain the multiplicative model.

The parameter 3 was chosen so that z and ¥(z) have the same dynamic range, i.e. from 0 to 255. The parameter o
was chosen empirically to optimize the subjective performance. Qualitatively, we want the lowpass component to contain
as much useful detail as possible, while keeping constant the cutoff frequency of the filter H (w)- To quantify this criterion,
we could try to minimize the difference between ln i ; and zn 5 j to address the aforementioned goal. Similarly, we could
try to minimize the energy in the texture 1, ;. This ensures that the amount of information contained in the texture is not
significant. We have measured these quantities for values of o in the range 0.1 < a < 2 for a sample set of ultrasound
images and the results are summarized in Figure 3. The graph (a) shows the dependency of the mean square difference
between I, ; ; and zn ¢, and the graph (b) shows the dependency of the energy of ¢n, ; ; on the parameter o.

We can see that the two criteria are conflicting, and a compromise between them is needed. The value o = 0.231 that
implies an approximately logarithmic mapping is in the range of values that provide a good tradeoff between the two criteria.
Therefore, the multiplicative model is a reasonable model to use for the encoding of ultrasound images.

The additive and multiplicative models are compared in Figure 6. A sample original ultrasound image is presented
together with the reconstructed images obtained by using the additive (o = 1) and multiplicative (o = 0.231) models. We
can see that the multiplicative model has improved subjective appearance.

Because this decomposition is similar to the homomorphic luminance-refiectance decomposition introduced by Stock-
ham? in the context of image enhancement, we can also hope to be able to introduce some image enhancement capability
to the ultrasound images. In fact, the system is constructed with this feature. Unlike Stockham's approach where different
gains are imposed on the two components, we perform histogram modification of the lowpass component. This provides
greater flexibility for enhancement. The histogram transformation used in this paper is nonlinear and has the profile shown
in Figure 4. It was observed experimentally that the features most difficult to preserve during encoding are represented in
the low and medium amplitude range of the lowpass component. Thus, contrast modification in this region is expected to
enhance perceived quality. Preliminary results indicate that this is true. At this point enhancement results have not been
evaluated by medical specialists, but hopefully will be by the time of the conference presentation.

4 LOWPASS COMPONENT CODING

Taking into account the way the lowpass component I, ; ; was obtained, it can be represented by W(ln,i,j), Whichis a
bandlimited signal with a cutoff frequency of x/ D in both horizontal and vertical directions. Therefore, ¥(In i,;) can be
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decimated by D in both horizontal and vertical directions without loss of information due to aliasing. Since the mapping
¥(-) is one-to-one and onto, ln ¢ j can be decimated and reconstructed. By coding the decimated version of I, ¢ ;, the net
bit rate can be reduced dramatically.

One of the front-running image coding techniques is subband coding 45 It refers to a broad class of systems where
the input is decomposed into subband images and the subband images are coded for transmission or storage. In this work,
an new optimized subband image coder is employed.! This particular subband coding system consists of decomposing
the lowpass component into 16 uniform subbands using the A1l two-band analysis filters introduced in reference [%].
The implementation can be made very efficient computationally by using specially designed recursive filters that require no

multiplication operations.! The subbands are then quantized using entropy-constrained multistage quantizers with intra-band
and inter-band conditioning.

This subband coding system is described in detail in references [1] and [2). Hence our discussion of this part of the coder
is brief. Let it suffice to say that the subband coder is based on encoding each subband pixel (one quantization stage at a
time) using conditional entropy coding. The conditioningis based on the quantized symbol values in the local neighborhood
of the pixel and in corresponding locations across the subbands. Conditional entropy coding of this form allows statistical
dependencies within and across subbands to be used to our advantage.

In addition however, we also extend the conditioningto include corresponding pixels in previous frames. Implementation
complexity limits the number of conditioning symbols that can be used practically, which is unfortunate. Therefore only
the most statistically important conditioning symbols are used (the precise number being fixed a priori by implementation
constraints). For a fixed number of conditioning symbols, an algorithm that finds the location of conditioning symbols such
that the overall entropy is minimized is described in.” ’

Conditioning on previous frames is reasonable since there is a lot of correlation between consecutive frames, especially
after the noise has been filtered out in the nonlinear subband decomposition stage. This conditioning scheme is described in
Figure 5, where only spatial conditioning is depicted. Inter-subband and inter-stage conditioning are not shown in the figure
for clarity resons. Solid lines represent intra-frame conditioning and dashed lines represent inter-frame conditioning. Note
that this conditioning scheme requires a large number of previous frames to be buffered. However, this is not a big problem
in our case, because the frames are small (64 by 64 pixels).

This type of conditioning for cardiology ultrasound video can be used to exploit the fact that the image sequence is
quasiperiodic, with a period given by the heartbeat rate. Therefore, we can use conditioning based on symbols from the
frame located one heartbeat period before the current frame. A couple of techniques can be used for estimating the heartbeat
period. Ideally, we would choose the value that minimizes the average codeword in the current frame. This method is
‘computationally intensive. A simpler method is to use for conditioning the frame that minimizes the difference between
itself and the current frame. However, ultrasound machine outputs often provide the EKG signal explicitly. Thus the
simplest way is to extract the period directly from the accompanying EKG.

5 TEXTURE CODING

The texture component is a valuable part of the coded signal in the sense that it contributes to the natural appearance of
the reconstructed image. However, much of this texture component is just random noise. One can postulate that the texture
of the tissue in the examined region is the same for a relatively long period of time, except when the sensor device is in
motion, and additive noise contributes most to the rapid time variations in the signal statistics. A simple approach to encode
the texture componerit is to decimate it in the temporal dimension. A texture frame is then only encoded and transmitted
once every D, frames. At the receiver, the same decoded texture frame is used for the synthesis of D; consecutive frames.

For large values of Dy, this method may produce an unpleasant effect of static texture. In order to reduce this effect and
to have 2 more subjectively realistic decoded video sequence, two consecutively transmitted texture frames may be used
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Figure 5: The inter-frame and intra-frame conditioning scheme

alternatively. Alternating between these two texture frames every 1/30 seconds is an improvement but the flicker effects are
too strong. Further subjective improvement is achieved by switching between them every two or three 1/30 second periods.
Experiments have shown that the best subjective quality is obtained when we switch texture frames every three lowpass
component frames.

The same entropy-constrained quantization technique is used to encode the texture. The only difference is that condi-

tioning is realized only with respect to neighboring pixels and neighboring subbands. This is because there is no significant
correlation between textures D, frames apart.

6 EXPERIMENTS AND RESULTS

If the lowpass component is encoded at R, bits per pixel and the texture at R bits per pixel, the overall bit rate in bits
per second is given by

D% Rl + D2

The lowpass component spatial decimation factor D; can be equal to 8 if the coding system is used for positioning only, 4
if we need diagnostic quality, and 2 or even 1 if we implement a multiresolution system allowing zooming in the area of
interest. The texture component temporal decimation factor is in the range 25 to 40.

R=130 (256 x 256 256 x 256R2) .

In Figure 7 we present an original ultrasound image (a), the corresponding lowpass component (b), the reconstructed
image (c), and the reconstructed image with contrast enhancement (d). Enhancement has been performed using the histogram
transformation depicted in Figure 4 with the parameters L =170and f(L) = 210. : ‘

The parameters used for encoding are Dy =4, D, =60, Ry =045 R = 0.25. The overall bit rate is then
R = 55kbps + 8kbps = 63kbps, so this example can be used for transmission over an ISDN line. We have used a uniform
64-subband decomposition, and a quantizer having six stages and two code vectors per stage. ’

Encoded video segments will be pmcﬁted at the conference.
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A New Approach to Scalable Video Coding'
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Abstract

This paper introduces a new framework for video coding that facilitates op-
eration over a wide range of transmission rates. The new method is a subband
coding approach that employs motion compensation, and uses prediction-frame
and intra-frame coding within the framework. It is unique in that it allows
lossy coding of the motion vectors through its use of multistage residual vector
quantization. Moreover, it provides a rate-distortion-based mechanism for al-
ternating between intra-frame and inter-frame coders. The framework provides
an easy way to control the system complexity and performance, and inher-
ently supports multiresolution transmission. Experiments using the standard
sequence Miss AMERICA show that the coder significantly outperforms the
p X 64 coder (H.261 standard), while still maintaining reasonable complexity.

1 Introduction

Over the past several years many effective approaches to the problem of video coding
have been demonstrated. Motion compensation (MC) is the cornerstone of most video
coding systems presently in vogue and is the basic mechanism by which temporal
redundancies are captured in the current H.261 and MPEG standards. The coding
gains achievable by using motion compensated prediction and residual frame coding
are well known. Similarly exploiting spatial redundancy within the video frames
plays an important part in video coding. DCT-based schemes as well as subband
coding methods have been shown to work well for this application. Such methods
are typically applied to the MC prediction residual and to the individual frames. In
the strategy adopted by MPEG the sequence of video frames ‘s first grouped into
blocks of N, where the first frame in the block (the “so-called” I-frame) is coded
using an intra-frame DCT coder, while the other N — 1 frames (called P-frames) are
described by motion vectors and coded residuals. Clearly such an approach has been
very effective. However, there are notable limitations. In particular, the high level of
performance is not maingained over a full range of rates. Most notably, MPEG is not
suited for low bit rate applications below 64 kbps. In addition, it is limited in the
way it exploits the spatio-temporal variations in a video sequence.

In this paper we introduce a more flexible framework based on a subband repre-
sentation, motion compensation, and a new class of predictive quantizers. As with
MPEG, the concept of I-frame and P-frame is used. However the coding strategy opti-
mizes spatio-temporal coding within subbands. Thus a unique feature of the proposed

YThis work was supported by a grant from NASA



approach is that it allows for the flexible allocation of bits between the inter-frame
and intra-frame coding components of the coder. This is made possible by the use of
multistage residual vector quantizers (RVQ) in the subbands and a high order condi-
tional entropy coding scheme that exploits statistica] dependencies between motion
vectors in the same subband as well as between those in different subbands of the
current and previous frames, simultaneously. The new approach, which we develop
next, leads to a fully scalable system, with high quality and reasonable complexity.

2 The Video Coder

A high-level description of the framework is shown in the block diagram in Figure
1. Each frame of the input is first decomposed into subbands using a tree-structured
recursive analysis filter bank. The filter bank is based on a separable two-band de-
compositions, which employs allpass polyphase filters as described in [1]. Each of
the subbands is then decomposed into blocks of size W X H, where each block X
is encoded using two coders. One is an intra-frame coder, denoted I-subband coder;
the other is an MC-predictive coder, denoted P-subband coder. The encoder that
produces the minimum Lagrangian distortion is selected, and side information is sent
to the decoder indicating which of the two coders was chosen.

As will be explained later, both the I-subband and P-subband coders employ high
order entropy coding which exploits dependencies between blocks within and across
subbands. Since only one coder is chosen at a time, symbols representing some of the
coded blocks in either coder will not be available to the decoder. Thus, both the en-
coder and decoder must estimate these symbols. More specifically, suppose that the
I-subband coder is chosen. Then, the coded block is predicted and quantized using the
P-subband coder at both the encoder and decoder. If the P-subband coder is chosen,
then the motion-compensated reconstructed block is quantized using the I-subband
coder, also at both the encoder and decoder. In this case, the additional complex-
ity is relatively small because the the motion-compensated reconstructed blocks are
available at both ends, and only I-subband quantization is performed. In practice,
most of the blocks are coded using the P-subband coder. Thus, the overall additional
complexity is relatively small.

Figure 2 shows a typical generic coder (GC) structure for the I-subband coder. An
input block is first divided into sub-blocks or vectors, which are then quantized using
a multistage residual vector quantizer (GQ) [2] and entropy coded using a binary
arithmetic coder (BAC) [3, 4] that is specified by a finite-state machine (FSM) high
order statistical model [5, 6]. ‘

Figure 3 shows the structure of the P-subband coder. A full-search block matching
algorithm (BMA) using the mean absolute distance (MAD) is used to estimate the
motion vectors. Since the BMA does not necessarily produce the true motion vectors,
we employ a thresholding technique for improving the rate-distortion performance.
Let dp;» be the minimum MAD associated with a block to be coded. Also, let
T > 1.0 be a threshold, which is empirically determined from the statistics of the
subband being coded. We then choose all motion vectors with associated MADs d;
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that satisfy z—i‘; < T. When the motion estimate is accurate, the number M of
candidate motion vectors is more likely to have a value of 1. In cases where the
video signal undergoes sudden changes (e.g., zoom, occlusion, etc ...) that cannot
be accurately estimated using the BMA algorithm, a large number of motion vectors’
can be chosen as candidates, thereby leading to a large complexity. Thus, we limit
the pumber M of candidate motion vectors to a relatively small number Mp,.. (e.g.,
3or4).

In many conventional video subband coders as well as in MPEG, differential en-
tropy coding of motion vectors is employed. Since motion vectors are usually slowly
varying, the motion bit rate can be further reduced by exploiting dependencies not
only between previous motion vectors within and across the subbands but also be-
tween the vector coordinates. For this purpose, we employ a high rate multistage
residual 2-dimensional vector quantizer cascaded by a BAC specified by the FSM
statistical model described later. After the M candidate motion vectors are vector
quantized, M motion-compensated prediction blocks are generated, and correspond-
ing residual blocks are computed. The encoding of the residual block is done in the
same manner as for the original block.

An important part of the encoding procedure is the decision where either the I-
subband or the P-subband coders must be chosen for a particular block. Figure 1
shows the encoder procedure. Let Ry and D; be the rate and distortion associated
with I-subband coding the block X, respectively. Also, let Ry, 1<m< M be
the rate required by the 2-dimensional motion coder for the mth candidate motion
vector and (R™,D™) be the rate-distortion pair for the corresponding residual coder.
Assuming A is the Lagrangian parameter that controls the rate-distortion tradeoffs,
the I-subband coder is chosen if

| Dy+AR; < D7 + MR + Bfy), form =1,..., M.

Otherwise, the P-subband coder that leads to the lowest Lagrangian is chosen.
Statistical modeling for entropy coding the output of the I-subband, motion vec-
tor, and residual coders consists of first selecting, for each subband, N conditioning
symbols from a region of support representing a large number of neighboring blocks
in the same band as well as other previously coded bands. Then let F be a mapping
that is given by
u = F(s1,82,...48N),

where s1, $2,. .., SN are the N selected conditioning symbols and u € U represents the
state of the stage entropy coder..The mapping F converts combinations of realizations
of the conditioning symbgls to a particular state. For each stage in each subband,
a mapping F* is found such that the conditional entropy H(J|U), where J is the
stage symbol random variable and U is the state random variable, are minimized
subject to a limit on complexity, expressed in total number of probabilities that must -
be computed and stored. The tree-based algorithms described in [5, 6] are used to
find the best value of N subject to a limit Tj on the total iumber of probabilities.’
The PNN algorithm [7], in conjunction with the generalized BFOS algorithm [8], is
then used to construct tables that represent the best mappings F* for each stage
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entropy coder subject to another limit T, (T; << T;) on the number of probabilities.
Note that the number Ty controls the tradeoffs between entropy and complexity of
the PNN algorithm. The output of the RVQs are eventually coded using a adaptive
binary arithmetic coders (BACs) [3, 4] as determined by the FSM model. BAC coders
are very easy to adapt and require small complexity. They are also naturally suited
for this framework because experiments have shown that a stage codebook size of 2
usually leads to a good balance between complexity and performance and provides
the highest resolution in a progressive transmission environment. '

3 PRACTICAL DESIGN ISSUES

In both the I-subband and P-subband coders, the multistage RVQs and associated
stage FSM statistical models are designed jointly using an entropy and complexity-
constrained algorithm, which is described in [5, 6). The design algorithm iteratively
minimizes the expected distortion E{d(X, X)} subject to a constraint on the overall
"entropy of the stage FSM models. The algorithm is based on a Lagrangian minimiza-
tion and employs a Lagrangian parameter A to control the rate-distortion tradeoffs.
The overall FSM statistical model, or the sequence of stage FSM models, enables the
design algorithm to jointly optimize the entropy encoders and decoders subject to a
limit on complexity. To substantially reduce the complexity of the design algorithm,
only independent subband fixed-length encoders and decoders are used. However,
the RVQ stage quantizers in each subband are jointly optimized through dynamic
M-search [9], and the decoders are jointly optimized using the Gauss-Seidel algo-
rithm [2].

To achieve the lowest bit rate, the FSM models used to entropy code ‘the output
of the RVQs should be generated on-line. However, this requires a two-pass process
where statistics are generated in the first pass, and the modeling algorithm described
above is used to generate the conditional probabilities. These probabilities must then
be sent to the BAC decoders so that they can track the corresponding encoders. In
most cases, this requires a large complexity. Moreover, even by restricting the number
of states to be relatively small (such as 8), the side information can be excessive.
Therefore, we choose to initialize the encoder with a generic statistical model, which
we generate using a training video sequence, and then employ dynamic adaptation
[3] to track the local statistics of the motion flow.

The proposed coder has many practical advantages, due to both the subband
structure and the multistage structure of RVQ. For example, multiresolution trans-
mission can be easily implemented in such a framework. Another example is error
correction, where the more probable of the two stage code vectors is selected if an
uncorrectable error is detected. Since each stage code vector represents only a small
part of the coded vector, this will not significantly affect the reconstruction or the
FSM statistical models. '
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4 EXPERIMENTAL RESULTS

To demonstrate the performance of the new entropy coding technique, we designed
a low bit rate coder for QCIF (176 x 144 x 10 Hz) YUV color video sequences. We
use the full-search algorithm for estimating the block motion vectors with mean ab-
solute difference (MAD) criterion for the measure of the match between two blocks.
In practice, it is found that the MAD error criterion works satisfactorily well [10].
Motion estimation is performed only on the Y luminance component and the es-
timated motion vector field is subsequently decimated spatially in horizontal and
vertical directions, and in magnitude for the use of motion compensation of U and
V chrominance signals. Figure 4 (a) shows the overall bit rate usage and Figure 4
(b) shows the Peak SNR result of our coder in comparison with H.261 standard for
50 frames of the color test video sequence Miss AMERICA. The average bit rate is
approximately 15.98 kbps and the average Peak SNR is 35.13 dB.
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RATE-DISTORTION-CONSTRAINED STATISTICAL MOTION ESTIMATION
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ABSTRACT

A rate-distortion-constrained statistical motion estimation
algorithm is presented here that leads to improvements in
subband video coding. The main advantages of the algo-
rithm is that it requires a relatively small number of com-
putations, produces a much smoother motion field, and
employs a more effective measure of performance that the
conventional mean absolute difference or mean squared er-
ror. The proposed algorithm circumvents problems in the
motion compensation loop such as illumination variations,
noise, and occlusions, by providing a mechanism for alter-
nating between intra-frame and residual coding. Experi-
mental results demonstrate that the corresponding video
coder outperforms the H.263 in terms of motion vector
search complexity and overall bit rate at the same repro-
duction quality.

1. INTRODUCTION

In conventional video coding systems, block matching al-
gorithms (BMAs) are often used for motion estimation to
remove temporal redundancies {1, 2, 3]. Such algorithms
form the foundation for many video coders and are part of
the H.261, H.263, and MPEG standards [4, 5, 6, 7], mainly
because they are relatively simple in concept and design,
but also because they tend to work reasonably well.

A disadvantage of BMAs, in general, is that their perfor-
mance is sensitive to illumination changes, noise, occlusion,
and reconstruction quality of previously coded frames. Mo-
tion vector estimates often do not correspond to physical
motion in the video scene. Even where motion does not
exist, BMAs produce an estimate. This can lead to a rough
motion field, where many motion vectors carry little use-
ful information, yet are very difficult to encode. Moreover,
since 2 mean squared error or mean absolute difference dis-
tortion measure is usually used as the matching criterion,
the motion vector estimate does not necessarily lead to the
best rate-distortion performance [8, 9, 10]. To address some
of these problems, the MPEG-2 standard, for example, pro-
vides a mechanism for alternating between intra-frame and
inter-frame coders.

In this paper, we introduce a rate-distortion constrained
statistical motion estimation algorithm that not only re-
quires a level of complexity that is comparable to that of
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Figure 1: Block diagram of rate-distortion-constrained sta-
tistical motion estimation.

the fastest BMAs but also solves most of the above prob-
lems, thereby leading to a more consistent motion field.
The algorithm is used for motion estimation on the subband
level [11, 12], where high order entropy-constrained residual
scalar quantization is employed for coding both the original
and residual subbands. The proposed algorithm exploits
the natural motion field smoothness that tends to exist spa-
tially, temporally, and across subbands. It selects motion
vectors based on the current behavior of the motion field
and also based on the performance of the residual coder,
which is also the ultimate objective performance measure
of the video coder. Although the proposed algorithm is
presented in the context of subband video coding, its un-
derlying principles can also applied in other contexts.

2. THE PROPOSED MOTION ESTIMATION
ALGORITHM

The proposed motion estimation algorithm is illustrated
in Fig. 1. Each frame of the video sequence is decomposed
into M subbands using a uniform subband decomposition-
structure. The algorithm is applied to each subband in-
dependently, using information from previously coded sub-
bands (see Fig. 2). First, sufficiently large block and search
region sizes are chosen for each subband. All of the possi-
ble motion vectors in the search region are then divided into
clusters or rectangular regions. This is illustrated in Fig.
3, where each black dot denotes a motion vector location.
The search region shown in the figure corresponds to 4
displacements for each of the two coordinates. During the
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in intra-band motion estimation.

design process, conditional probabilities are generated for
each of the rectangular regions, and these probabilities are
grouped into tables, each corresponding to a conditioning
state. The states are derived based on previously coded mo-
tion vector in a subband-spatial region of support. In other
words, a high order statistical model that is driven by 2
finite-state machine (FSM) is built that exploits statistical
dependencies in the motion field between motion vectors
within the current subband as well as between subbands
in both the same frame and previous frames. Complexity

reduction techniques described in [13] allow us to use a suf- -

ficiently large conditioning subband spatio-temporal region
of support, yet produce only a small number of condition-
ing states. Since the motion field is usually quasi-stationary,
adaptation is used during the encoding procedure, but the
conditioning network is kept fixed for a larger number of
frames.

Given a conditioning state, the algorithm, illustrated
in Fig. 3, performs two passes. In the first layer pass,
the motion vector (solid line terminated by x) with largest
probability p: contained in the rectangular region with the
largest conditional probability p; (i.e. region 1 in Fig. 3)

is selected first as the candidate motion vector. A high
order entropy-constrained residual coder [13] is then ap-
plied to the difference between the original block and the
motion-compensated prediction block, producing a rate Rr
and a distortion Dy, as shown in Fig. 1. Next, we com-
pute the Lagrangian Jx = Dr + A(Rm + R:), where Rm
is the motion vector bit rate, set here for simplicity to the
sum of conditional self-information components ' Rm =
—log,(p:) ~ Jogy(py). Let Jo be the current running av-
erage Lagrangian and Ti be a threshold® that determines
the tradeofls between complexity and rate-distortion perfor-
mance. If Jx < Ti(Je), then the selected motion vector is.
accepted and encoding is terminated for that block by send-
ing motion and residual encoded bits to the channel. At this
point, practically no computations have been performed for
the estimation procedure. All multiplies/adds performed
would have been needed for encoding subsequently. If Ja >
Ti(Ja), then the selected motion vector is rejected and 2
signal is fed back to the motion estimator, where the most
probable motion vector located in the region with the sec-
ond largest conditional probability p; is selected as an al-
ternative candidate. This is indicated by the dashed line
terminated by x in region 2 of Fig. 3. This procedure is
repeated until either the above condition is met, when en-
coding is aborted, or all regions are exhausted. In cases
where little or no motion exists in the video scene, encod-
ing is aborted in the early stages of the first layer pass.
However, in cases where the video signal undergoes sudden
changes (e.g., zoom, occlusion, illumination), accurate mo-
tion vectors cannot be predicted based on the probabilities
in the model because no @ priori information about sudden
motion variations is available. As 2 result, an inaccurate
motion vector predicted by the statistical model will gener-
ally Jead to an increase in the Lagrangian value Ja. In such
cases, a second layer pass is employed.

In the second layer pass, the lowest Lagrangian J3 is
compared to Ja. If JX > T:(Ja), where T3 is a threshold,
whose best value is found experimentally to be between 2.0
and 3.0, then the algorithm exits. Otherwise, the region
that led to the lowest Lagrangian is again considered, where
other less probable motion vectors belonging to the same
region are chosen as candidates. The algorithm proceeds
by applying the same procedure as in the first layer pass.
In other words, for the next most probable motion vector,
the new motion-compensated prediction block is computed,
and the same entropy-constrained residual scalar coder is
applied to the corresponding residual block. The same pro-
cedure is repeated until the proper condition is satisfied, or
all regions are exhausted. Finally, in the case where the
algorithm exits the two passes without yielding any “good” -
motion vector candidate, the lowest Lagrangian produced
during both passes is compared to that of the intra-frame
coder, and the coder leading to the lower value is used.
Details of the rate-distortion-based mechanism, by which a
particular coder is chosen, as well as a complete description
of the residual coder can be found in [12].

3Note that by storing —log,(p) instead of & probability p, no
logg operations need to be performed. .
The best value of T is determined experimentally, and is
usually between 1.0 and 1.5.
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s. ADVANTAGES OF THE PROPOSED
ALGORITHM

At first glance, the proposed motion estimation algorithm
seems quite complicated. However, experimental results
show that, depending on the bit rates of operation and
the contents of the video scene, our algorithm stops af-
ter the first stage of the first layer pass, which requires
practically no computations, more than 90% of the time.
Moreover, the algorithm completes both passes in only ap-
proximately 2% of the cases. Besides its computational
advantage, the proposed algorithm has several other fea-
tures worthy of mention. First, it efficiently and effectively
exploits dependencies between motion vectors by using a
two-layer, region-based and vector-based, statistical model.
Second, it improves the consistency of the spatio-temporal
smoothness of the motion field and reduces sensitivity of
the estimation by favoring the most probable candidates.
To illustrate this, Figures 4 (a) and (b) show the compari-
son between the motion fields resulted from our algorithm
and the full-search BMA. The increased smoothness ob-
served in Fig. 4 (b) indicates a lower entropy. Not only it
is easier to encode the motion vectors in Fig. 4 (b), but
the subjective quality of the reconstructed video frames is
also better. Another advantage of our algorithm is that it
directly embeds the residual coder into the estimation loop,
thereby potentially leading to overall better rate-distortion
performance. Finally, note that the number of computa-
tions required by the proposed motion estimation algorithm
is variable, and depends on the content of the video scene.
In variable length video coders (such as MPEG), this can
be incorporated into the buffering schemes already being
used in bit rate control.

4. EXPERIMENTAL RESULTS

In the experiments, the QCIF version of the Miss AMERICA
sequence is used for the test sequence. To compare the per-
formance of our video coder with the current technology for
low bit rate video coding (i.e., below 64 kbits/sec), we used
the software simulation model of the new H.263 standard
obtained from ftp://bonde.nta.no/pub/tmn [14].

The subband decomposition is a uniform 2 x 2 exact
reconstruction analysis/synthesis system. We chose the re-
cursive filter banks for their computational efficiency. The
block size for searching the motion vector candidates in our
algorithm is 4 x 4. A search region of +4 pixels in both
spatial directions is chosen. The threshold values T and T3
are set to be 1.2 and 3.0 respectively. The current running
average Lagrangian J, is computed based on the previous
four Lagrangian J» values in order to make the algorithm
more adaptive. All the motion vectors throughout the ex-
periments are at whole pixel accuracy. Motion estimation
is performed only for the luminance component and the es-
timated motion vector field was subsequently used for the
motion compensation of the chrominance signals. The tar-
get bit rate is set to be approximately 16 kbits/sec.

Fig. 5(a) and (b) show the bit rate usage and the PSNR
coding performance of our coder and the H.263 standard for
50 frames of the luminance component of the color test se-
quence Miss AMERICA. We fixed the PSNR and compared
the corresponding bit rates required by both coders.
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(2) MOTION FIELD FOR FULL-SEARCH BMA
Motion Vactors of Frame 2 of Flowsr Garden
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(b) MOTION FIELD FOR OUR ALGORITHM
Motion Vectors of Frame 2 of Fiowsr Garden

e e e m e v m e e e s s e e—————————————- e o - & S
et e e sebsansmesesese e sm e - -~ - e Se——

............... e

...................
emeaseescsasssemncennes am

VNeagygoenvecesencecce

AT

.............. Sy s nee e Nmme - -
ersemmsasNatloaschanens L e N
- etV Vet ottume oo Sememtannnt ..

P R el T )

-N e e

...... PR e

e s am oo e e e Mo m o e e ¢ a0 &S R -

Figure 4: Motion vector field obtained by (a) FS-BMA
and (b) our algorithm on the low-pass subband of FLOWER
GARDEN (SIF format) Frame No. 2. We used a 4 pixel
search region with block size of 4 x 4.

While the average PSNR is approximately 39.4 dB for
both coders, the average bit rate for our coder is only 13.245
kbits/sec as opposed to 16.843 kbits/sec for the H.263 stan-
dard. To achieve the same PSNR performance, our coder
requires only 78% of the overall bit rate of the H.263 video
coder.

Finally, to illustrate the computational reduction in'mo-
tion estimation, we show the comparison in terms of number
of matches required for our algorithm and the full-search
BMA. For the FS-BMA with the same X4 search region
in a subband frame, the number of matches required is
22 % 18 x 81 = 32076, and 4 x 4 = 16 MAD calculations for
each corresponding match. Our algorithm requires at most
22 % 18 x (9 + 9 — 1) = 6732 matches with a table look-up
of codebook size 9 with no MAD calculations. For exam-
ple, in Frame 41 of the Miss AMERICA sequence, 305 out




of 22 x 18 = 396 matches are found in the first stage of the
first Jayer pass. Furthermore, no match is found to exhaus-
tively search all stages in both first and second layer passes.
The algorithm uses a total of 1202 matches in comparison
with 32076 matches that would have been required by the
FS-BMA, and our algorithm requires no MAD calculations.

In conclusion, our algorithm outperforms the current
H.263 standard by more efficient utilization of bit rates
given an image quality. In terms of search complexity in
motion estimation, our algorithm is able find a better mo-
tion vector field in a rate-distortion sense and requires a
fraction of the computation in comparison to the full-search
BMA.
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Figure 5: The comparison of overall performance — (2) bit
rate nsage, and (b) PSNR quality, — of our video coder
with H.263 standard for Miss AMERICA QCIF sequence at
10 frames/sec. Not shown in (a) are the values 5465 bits -
and 7381 bits used by intra-frame (Frame 1) of our coder
and H.263 standard respectively. Only the PSNR of Y lu-
minance frames are shown in (b).
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